BIAS 22 – Review day 2 keynote – Prof. Liz Sonenberg: “Imperfectly rational, rationally imperfect, or perfectly irrational…”

Imperfectly rational, rationally imperfect, or perfectly irrational: challenges for human-centered AI keynote by Prof. Liz Sonenberg

This blog post is written/edited by CDT Students  Isabella Degen and Oliver Deane

Liz opened the second day of BIAS 22 with her thought-provoking and entertaining keynote speech about automatic decision-making aids. She demonstrated how we humans make perfectly irrational decisions and spoke about the implications of using Explainable Artificial Intelligence (XAI) for better decision-making. Liz’s talk mentioned a great body of research spanning psychology, mathematics, and computer science for which she kindly provides all the references here https://tinyurl.com/4njp563e.

Starting off, Liz presented research demonstrating how subtle influences in our life can change the decisions we make despite us thinking that we are making them completely rationally. What we believe is human rational decision-making in fact is littered with cognitive biases. Cognitive bias is when we create a subjective reality based on a pattern we perceive regardless of how representative that pattern is of all the information. Anchoring is a type of cognitive bias that happens when a decision of a person is influenced by an anchor such as a random number being shown while the person knows that they are being shown a random number that has nothing to do with their decision. An example Liz shared is an experiment by Englich et al who used irrelevant anchors to change experts’ decision-making. In the experiment young judges were asked to discover the length of the sentence for a theft crime by throwing a dice. Unkown to the judges the dice was rigged: for one group of judges it would throw high numbers, for the other it would throw low numbers. The judges knew that throwing a dice should not influence their decision. However, the result was that the group with the dice giving low numbers gave a 5 months sentence while the group with the dice giving high numbers gave an 8 months sentence. This is not the only kind of cognitive bias. Human decision making also suffers from framing bias where the way in which data is presented can affect the decision we make. As well as confirmation bias where we tend to interpret new information as a confirmation of our existing beliefs without considering that we only ever observe a limited kind of information and so forth. With these examples Liz made us doubt how clearly and rationally we humans can make decisions.

The irrationality of humans is an interesting challenge to consider for researchers attempting to create intelligent systems that help us humans make better decisions. Should we copy the imperfect human rationality in intelligent agents, or should we make them more rational than humans? And what does that mean for interactions between human and intelligent systems? Research shows that it is important that human operators have a sense of what the machine is doing to be able to interact with it. From accidents such as the Three Mile Island’s partial meltdown of a nuclear reactor, we can learn how important it is to design systems in a way that does not overwhelm the human operator with information. The information presented should be just enough to enable an operator to make a high-quality decision. It should help the operator to know when they can trust the decision the machine made and when to interrupt. When designing these systems, we need to keep in mind that people suffer from biases such as automation bias. Automation bias happens when a human cannot make a decision based on the information the machine provides and instead decides to just go with the machine’s decision knowing that the machine is more often right than the human. Sadly, this means that a human interacting with a machine might not be able to interrupt the machine at the right moment. We know that human decision-making is imperfectly rational. And while automation bias appears to be an error, it is in fact a rational decision in the context of limited information and time available to the human operator.

One promise of XAI is to use explanations to counteract various cognitive biases and with that help a human operator to make better decisions together with an intelligent system. Liz made a thought-provoking analogy to the science of magic. Magicians use our limited memory and observation abilities to manipulate our feelings and deceive us and make the impossible appear possible. A magician knows that the audience tries to spot how the trick works. And on the other hand, the audience also knows that the magician tries to deceive them and that they are trying to discover how the trick works. Magicians understand their audience well. They know what humans really do and exploit the limited resources they have. Like in magic human-centered AI systems ought to anticipate how perfectly irrational we humans make decisions to enable us to make better decisions and counteract our biases.

BIAS 22 – Review day 2 talk – Dr Oliver Ray: “Knowledge-driven AI”

This blog post is written/edited by CDT Students  Daniel Collins and Matt Clifford

BIAS 22 – Day 2, Dr Oliver Ray: “Knowledge-driven AI”

The second talk of day two was delivered by Dr Oliver Ray (University of Bristol), on the topic of human-in-the-loop machine learning using Inductive Logic Programming (ILP) and its application in cyber threat elucidation.

Cyber threat elucidation is the task of analysing network activity to identify ransomware attacks, and to better understand how they unfold. Ransomware is a type of malware which infects victims’ devices, encrypts their data, and demands money from them to restore access. Infection typically occurs through human error. For example, a person may be unwittingly tricked into downloading and running a “trojan” – malware that has been disguised as a legitimate and benign file. The executed ransomware encrypts data, and backups of that data, on the infected system, and the perpetrator can then demand a ransom payment for decryption services. However, ransomware does not always start encrypting data immediately. Instead, it may lay relatively dormant whilst it spreads to other networked systems, and spend time gathering sensitive information, and creating back-ups of itself to block data recovery. If an attack can be identified at this stage or soon after it has started encrypting data, it can be removed before most of the data has been affected.

Ransomware is a persistent threat to cyber security, and each new attack can be developed to behave in unpredictable ways. Dr Ray outline the need for better tools to prepare for new attacks – when faced with a new attack, there should be systems to help a user understand what is happening and what has happened already so that ransomware can be found and removed as quickly as possible, and relevant knowledge can be gained from the attack.

To identify and monitor threats, security experts may perform forensic analysis of Network Monitoring Systems (NMS) data from around the time of infection. This data exists in the form of network logs – relational databases containing a time-labelled record of events and activity occurring across the networked systems. However, there are very large amounts of log data, and most of it is associated with benign activity, unrelated to the threat, making it difficult to find examples of malicious activity. Further, in the case of new threats, there are little to no labelled examples of logs known to be related to an attack. Human knowledge and reasoning are therefore crucial for identifying relevant information in the logs.

ILP based machine learning (ML) was then presented by Dr Ray as a promising alternative to more ‘popular’ traditional ML methods for differentiating ransomware activity from benign activity in large network logs.  This is because ILP is better suited for working with relational data, an area where deep learning and traditional ML methods can struggle since often require tabular or vectorisable data formats. ILP not only gives the ability to make predictions on relational data, but it also produces human interpretable logic rules through which it is possible to uncover and learn about the system itself. This could provide valuable insights into how the infection logs are generated, and which features of the logs are important for identification, as opposed to guessing which features might be important.

Dr Ray went on to detail the results of his work with Dr Steve Moyle (Amplify Intelligence UK and Cyber Security Centre, University of Oxford), on a novel proof-of-concept for an ILP based “eXplanatory Interactive Relational Machine Learning” (XIRML) system called “Acuity”. This human-in-the-loop system allows ILP and cyber security experts to direct the cyber threat elucidation process, through interactive functionality for guided data-caching on large network logs, and hypothesis-shaping for rebutting or altering learned logic rules.

In his concluding remarks, Dr Ray shared his thoughts on the future of this technology. As he sees it, the goal is to develop safe, auditable systems that could be used in practice by domain experts alone, without the need for an ILP expert in the loop. To this end, he suggests that system usability and human-interpretable outputs are both crucial factors for the design of future systems.

BIAS 22 – Review Day 2 talk – Dr Nirav Ajmeri: “Ethics in Sociotechnical Systems'”

This blog post is written/edited by CDT Students Jonathan Erkine and Jack Hanslope

Following from a great keynote by Liz Sonenberg, Dr Nirav Ajmeri presented a discussion on Ethics in Socio-Technical Systems (STS).

As is common practice in discussions on AI, we began by looking inwards to what kind of human behaviour we are trying to replicate – what aspect of intelligence have we defined as our objective? In this case it was the ability of machines to make ethical decisions. Dr. Ajmeri referred to Kantian and Aristotelian ethical frameworks which describe moral duty and virtuous behaviour to establish an ethical baseline, which led to the first main takeaway of the discussion:

We must be capable of expressing how humanity defines, quantifies, and measures ethics before discussing how we might synthesise ethical behaviour.

Dr. Ajmeri clarified that ethical systems must be robust to situations where there are “no good choices”. That is, when even a human might struggle to see the most ethical path forwards.  Keen to move away from the trolley problem, Nirav described a group of friends who can’t agree on a restaurant for their evening meal, expounding on the concepts of individual utility, rationality, and fairness to explain why science might fail to resolve the problem.

The mathematical solution might be a restaurant that none of them enjoy, and this could be the same restaurant for every future meal which they attend. From this example, the motivation behind well-defined ethics in socio-technical systems becomes clear; computers lack the ability to apply emotion when reasoning about the impact of their decisions, leading to the second lesson which we took from this talk;

Ethical integration of AI into society necessitates the design of socio-technical systems which can artificially navigate “ethical gridlock”.

Dr. Ajmeri then described the potential of multiagent systems research for designing ethical systems by incorporating agents’ value preferences (ethical requirements) and associated negotiation techniques. This led to a good debate on the merits and flaws of attempting to incorporate emotion into socio-technical systems, with questions such as:

Can the concept of emotion be heuristically defined to enable pseudo-emotional decision making in circumstances when there is no clear virtuous outcome?

Is any attempt to incorporate synthetic emotion inherently deceitful?

These questions were interesting by the very nature that they couldn’t be answered, but the methods described by Nirav did, in the authors opinion, describe a system which could achieve what was required of it – to handle ethically challenging situations in a fair manner.

What must come next is the validation of these systems, with Nirav prompting that the automated handling of information with respect to the (now not-so-recent) GDPR regulations would provide a good test bed, prompting the audience to consider what this implementation might involve.

The end of this talk marked the halfway point of the BIAS summer school, with plenty of great talks and discussions still to come. We would like to thank Dr. Nirav Ajmeri for this discussion, which sits comfortably in the wheelhouse of problems which the Interactive AI CDT has set out to solve.

BIAS 22 – Review Day 1 – Dr James Cussens: ‘Algorithms for learning Bayesian networks’

BIAS 22 DAY 1, TALK 1 

This blog post is written by CDT Students  Roussel Desmond Nzoyem, Davide Turco and Mauro Comi 

This Tuesday 06th September 2022 marked the start of the second edition of the Bristol Interactive AI Summer School (BIAS): a unique blend of events (talks, workshops, etc.) focusing on machine learning and other forms of AI explored in the Interactive AI CDT.

Following the tradition, BIAS22 began with a few words of introduction from the CDT director, Professor Peter Flach. He welcomed and warmly thanked the roomful of attendees from academia and industry.

Prof Flach proceeded with a passionate presentation of the range of speakers while giving the audience a brief taste of what to expect during the 3-day long event: talks, workshops, along with a barbecue! He remarked on the variety of Interactive AI ingredients that would be touched: data-driven AI, knowledge-driven AI, human-AI interaction, and Responsible AI.

Prof Flach’s introduction ended with an acknowledgement of the organisers of the event.

 

Dr James Cussens: ‘Algorithms for learning Bayesian networks’

The first talk of the day was an introduction to Bayesian networks and methods to learn them, given by our very own James Cussens.

Bayesian networks (BN) are directed acyclic graphs, in which each node represents a random variable. The important aspects of these networks, as Dr Cussens highlighted, is that they both define probabilistic distributions and causality relationships: this makes Bayesian networks a popular tool in complex fields such as epidemiology and medical sciences.

Learning BNs is a form of unsupervised learning, based on the assumption that the available data (real or simulated) is generated by an underlying BN. There are multiple reasons for learning a BN from data, such as learning a data-generating probability distribution or learning conditional independence relationships between variables; the talk, however, focused on learning a BN in order to estimate a causal model of the data, which is a task not easy to complete with other machine learning approaches we study and use in the CDT.

A popular algorithm for learning the structure of a BN, the so-called DAG, is constraint-based learning: the basic idea behind this algorithm is to perform statistical tests on data and find a DAG which is consistent with the outcomes of the tests. However, this approach presents some issues: for example, different DAGs could encode the same set of conditional independence relationships.

Dr Cussens then proceeded to introduce DAGgity, a widely used software for creating DAGs and analysing their causal structure. It is important to note that DAGgity does not learn DAGs from data, but allows the researcher to perform interventions and graph surgery. For example, it could allow a clinician to infer a treatment-response causal effects without doing that in practice. The talk also included a small excursus on score-based learning of BNs, which is a Bayesian approach to learning these networks, I.e., it has a prior formulation.

There are many different methods for learning BNs and evaluation is key for choosing the best method. Dr Cussens introduced benchpress, a framework for performing method evaluation and comparison, and showed some results from the benchpress paper, including the evaluation of his own method, GOBNILP (Global Optimum Bayesian Network via Inductive Logic Programming).

We are thankful to James Cussens for opening the BIAS22 with his talk; it was great to get an introduction to these methods that put together many aspects of our CDT, such as causality and graphical models.

 

BIAS 22 – Review Day 1: Professor James Ladyman: “Attributing cognitive and affective states to AI systems”

This blog post is written by CDT Student Henry Addison

BIAS 22 – Human stupidity about artificial intelligence: My thoughts on Professor James Ladyman’s talk “Attributing cognitive and affective states to AI systems”,  Tuesday 6th September 2022

The speaker arrives, sweaty, excited after his dash across town. The AI never stops working so perhaps he cannot either. He is a doom-monger. How are the lying liars in charge lying to you? When those people-in-charge run large tech companies, how do they take advantage of our failures to both miss and over-attribute cognitive and affective states and agency to AI in order to manipulate us?

AI is a field that seeks to decouple capabilities that in humans are integrated. For humans interacting with them, this can surprise us. In adult humans intelligence is wrapped up with sentience, autonomy is wrapped up with responsibility. Not so the chess robot – very good at chess (which for a human requires intelligence) but not sentient – nor the guided targeting system for which the responsibility of target-picking is left to a human.

Humans are overkeen to believe an AI cares, understands, is autonomous. These words have many meanings to humans, allowing the decoupling of capabilities to confuse us. “Who cares for granny?” This may be a request for the nurse (human or robot) who assists your grandmother in and out of the bath. Or it may be a request of despair by a parent trying to get their children to help prepare a birthday party. If an AI is autonomous, is it a moral agent that is responsible for what it does?

The flip side of the coin are the capabilities that we do not attribute to an AI, perhaps because they are capabilities human do not have. We lose sight of important things. Like how the machines notice and store away far more than we expect and then use these data to serve us ads, recommend us films, deny us loans, guide us to romantic partners, get us hooked on the angry ramblings of narcissists, lock us up.

AI is shit. AI is ruining us. AI is enabling a descent into fascism. But presumably there is enough hope for him to bother building up such a sweat to come and talk to us. We must do more philosophizing so more people can understand AI and avoid unconscious manipulation by it. The business models of data that take advantage of us are our fault, they are human creations not technical necessities but that means we can change them.

Then again how was the speaker lying to me? How is your lying liar of an author lying to you?

CDT Research Showcase Day 2 – 31 March 2022

This blog post is written by CDT Student Matt Clifford

The second day of the research showcase focused on the future of interactive AI. This, of course, is a challenging task to predict, so the day was spent highlighting three key areas: AI in green/sustainable technologies, AI in education and AI in creativity.

Addressing each of the three areas, we were given introductory talks from industry/academia.

AI in green/sustainable technologies, Dr. Henk Muller, XMOS

Henk is CTO of Bristol based micro chip designers XMOS. XMOS’s vision is to provide low power solutions that enable AI to be deployed onto edge systems rather than being cloud based.

Edge devices benefit from lower latency and cost as well as facilitating a more private system since all computation is executed locally. However, edge devices have limited power and memory capabilities. This restricts the complexity of models that can be used. Models have to be either reduced in size or precision to conform to the compute requirements. For me, I see this as a positive for model design and implementation. Many machine learning engineers quote Occam’s razor as a philosophical pillar to design. But in practice it is far too tempting to throw power-hungry supercomputer resources at problems where perhaps they aren’t needed.

It’s refreshing to see the type of constraints that XMOS’s chips present us with opening the doors for green and sustainable AI research and innovation in a way that many other hardware manufacturers don’t encourage.

AI in Education, Dr. Niall Twomey, Kidsloop

Niall Twomey, AI in Education talk
Niall Twomey, KidsLoop, giving the AI in Education talk

AI for/in/with education helps teachers by providing the potential for personalised assistants in a classroom environment. They would give aid to students when the teacher’s focus and attention is elsewhere.

The most recent work from kidsloop addresses the needs of neurodivergent students, concentrating on making learning more appropriate to innate ability rather than neurotypical standards. There is potential for the AI in education to reduce biases towards neurotypical students in the education system, with a more dynamic method of teaching that scales well to larger classroom sizes. I think that these prospects are crucial in the battle to reduce stigma and overcome challenges associated with neurodivergent students.

You can find the details of the methods used in their paper: Equitable Ability Estimation in Neurodivergent Student Populations with Zero-Inflated Learner Models, Niall Twomey et al., 2022. https://arxiv.org/abs/2203.10170

It’s worth mentioning that kidsloop will be looking for a research intern soon. So, if you are interested in this exciting area of AI then keep your eyes peeled for the announcements.

AI in Creativity, Prof. Atau Tanaka, University of Bristol

Atau Tanaka, AI and Creativity talk, with Peter Flach leading the Q&A session
Atau Tanaka giving the AI and Creativity talk, with Peter Flach leading the Q&A session

The third and final topic of the day was Ai in a creative environment, specifically for music. Atau showcased an instrument he designed which uses electrical signals produced by the body’s muscles to capture a person’s gesture as the input. He assigns each gesture input to a corresponding sound. From here a regression model is fitted, enabling the interpolation between each gesture. This allows novel sounds to be synthesised with new gestures. The sounds themselves are experimental, dissonant, and distant from the original input sounds, yet Atau seems to have control and intent over the whole process.

The interactive ML training process Atau uses glimpses at the tangibility of ML that we rarely get to experiment with. I would love to see an active learning style component to the learning algorithm that would solidify the human and machine interaction further.

Creativity and technology are intertwined at their core and  I am always excited to see how emerging technologies can influence creativity and how creatives find ways to redefine creativity with technology.

Breakout Groups and Plenary Discussion

Discussion groups
Discussion groups during the Research Showcase

After lunch we split into three groups to share thoughts on our favourite topic area. It was great to share opinions and motivations amongst one another. The overall drive for discussion was to flesh out a rough idea that could be taken forward as a research project with motivations, goals, deliverables etc. A great exercise for us first years to undertake before we enter the research phase of the CDT!

Closing Thoughts

I look forward to having more of these workshop sessions in the future as the restrictions of the covid pandemic ease. I personally find them highly inspirational, and I believe that the upcoming fourth IAI CDT cohort will be able to benefit significantly from having more in person events like these workshops. I think that they will be especially beneficial for exploring, formulating and collaborating on summer project ideas, which is arguably one of the most pivotal aspects of the CDT.

CDT Research Showcase Day 1 – 30 March 2022

Blog post written by CDT Student Oli Deane.

This year’s IAI CDT Research Showcase represented the first real opportunity to bring the entire CDT together in the real world, permitting in-person talks and face-to-face meetings with industry partners.

Student Presentations

Pecha Kucha presentation given by Grant Stevens
Grant Stevens giving his Pecha Kucha talk

The day began with a series of quickfire talks from current CDT students. Presentations had a different feel this year as they followed a Pecha Kucha style; speakers had ~6 minutes to present their research with individual slides automatically progressing after 20 seconds. As a result, listeners received a whistle-stop tour of each project without delving into the nitty gritty details of research methodologies.

Indeed, this quickfire approach highlighted the sheer diversity of projects carried out in the CDT. The presented projects had a bit of everything; from a data set for analyzing great ape behaviors, to classification models that determine dementia progression from time-series data.

It was fascinating to see how students incorporated interactivity into project designs. Grant Stevens, for example, uses active learning and outlier detection methods to classify astronomical phenomena. Tashi Namgyal has developed MIDI-DRAW, an interactive musical platform that permits the curation of short musical samples with user-provided hand-drawn lines and pictures. Meanwhile, Vanessa Hanschke is collaborating with LV to explore how better ethical practices can be incorporated into the data science workflow; for example, her current work explores an ethical ‘Fire-drill’ – a framework of emergency responses to be deployed in response to the identification of problematic features in existing data-sets/procedures. This is, however, just the tip of the research iceberg and I encourage readers to check out all ongoing projects on the IAI CDT website.

Industry Partners

Gustavo Medina Vazquez's presentation, EDF Energy, with Q&A session being led by Peter Flach
Gustavo Medina Vazquez’s EDF Energy presentation with the Q&A session being led by CDT Director Peter Flach

Next, representatives from three of our industry partners presented overviews of their work and their general involvement with the CDT.

First up was Dylan Rees, a Senior Data Engineer at LV. With a data science team stationed in MVB at the University of Bristol, LV are heavily involved with the university’s research. As well as working with Vanessa to develop ethical practices in data science, they run a cross-CDT datathon in which students battle to produce optimal models for predicting fair insurance quotes. Rees emphasized that LV want responsible AI to be at the core of what they do, highlighting how insurance is a key example of how developments in transparent, and interactive, AI are crucial for the successful deployment of AI technologies. Rees closed his talk with a call to action: the LV team are open to, and eager for, any collaboration with UoB students – whether it be to assist with data projects or act as “guinea pigs” for advancing research on responsible AI in industry.

Gustavo Vasquez from EDF Energy then discussed their work in the field and outlined some examples of past collaborations with the CDT. They are exploring how interactive AI methods can assist in the development and maintenance of green practices – for example, one ongoing project uses computer vision to identify faults in wind turbines. EDF previously collaborated with members of the CDT 2019 cohort as they worked on an interactive search-based mini project.

Finally, Dr. Claire Taylor, a representative from QINETIQ, highlighted how interactive approaches are a major focus of much of their research. QINETIC develop AI-driven technologies in a diverse range of sectors: from defense to law enforcement,  aviation to financial services. Dr. Taylor discussed the changing trends in AI, outlining how previously fashionable methods that have lost focus in recent years are making a come-back courtesy of the AI world’s recognition that we need more interpretable, and less compute-intensive, solutions. QINETIQ also sponsor Kevin Flannagan’s (CDT 2020 cohort) PhD project in which he explores the intersection between language and vision, creating models which ground words and sentences within corresponding videos.

Academic Partners and Poster Session

Research Showcase poster session
Research Showcase poster session

To close out the day’s presentations, our academic partners discussed their relevant research. Dr. Oliver Ray first spoke of his work in Inductive Logic Programming before Dr. Paul Marshall gave a perspective from the world of human computer interaction, outlining a collaborative cross-discipline project that developed user-focused technologies for the healthcare sector.

Finally, a poster session rounded off proceedings; a studious buzz filled the conference hall as partners, students and lecturers alike discussed ongoing projects, questioning existing methods and brainstorming potential future directions.

In all, this was a fantastic day of talks, demonstrations, and general AI chat. It was an exciting opportunity to discuss real research with industry partners and I’m sure it has produced fruitful collaborations.

I would like to end this post with a special thank you to Peter Relph and Nikki Horrobin who will be leaving the CDT for bigger and better things. We thank them for their relentless and frankly spectacular efforts in organizing CDT events and responding to students’ concerns and questions. You will both be sorely missed, and we all wish you the very best of luck with your future endeavors!