BIAS 22 Review Day 1 – Daniel Bennett “Complexity and Embodiment in Human Computer Interaction”

This blog post is written/edited by CDT Students  Amarpal Sahota and Oliver Deane

This was a thought provoking starting point and one that clearly has a large impact on human computer interaction.  Daniel stated that this is a line of research in psychology, cognitive science, and robotics, that has run somewhat parallel to mainstream psychology.

One of the initiators of this was James J Gibson. Gibson and others in the last 70 years did a lot of work on how we use resources outside of just the brain, in our environment and in our bodies, and coordinate all of these together to behave effectively.  Daniel stated that with the lens of embodiment we start focusing on processes, interactions, and relations, and the dynamics that follow and this is primarily a change in how we model things.

Therefore, to summarize one could consider the traditional cognitive model as a linear system. First we sense the world, then we form a representation of that world in our brain. Then the representation gets processed through a bunch of neatly defined modules, updates existing plans and intentions, and results in some representation of an action, which we then carry out. The embodied view is more complex as we are not simply in the world but also a part of it.  The world is changing constantly, and our behaviour and cognition is simply another physical process in this world.

At a high-level embodied approaches consider behaviour in the world as a kind of continual adjustment and adaptation, with most behaviours are grounded in a kind of improvisatory, responsive quality. Daniel shared a good example of this from Lucy Suchman related to canoeing where you may have an idea of your plan as you look down the river ‘I need to stay left there, slow down over there’ but at execution time you have to adapt your plan.

Daniel stated that a lot of work has been done observing a wide range of human behaviours, from technology interaction, to manning air-traffic control centres and crewing ships. In all of these contexts it is argued that our embodied skills – our adaptation and our implicit skills of coordination with the mess of the situation as it plays out – are the most important factor in determining outcomes.

Human Computer Interaction is increasingly focused on complex behaviours. Daniel talked about the idea that we’re going to do more and more in augmented reality and virtual reality. Computing will be integrated to support a wide range of everyday behaviours, which are not conventionally “cognitive” – you’re not sitting and thinking and making only very small movements with your fingers on a keyboard.

Daniel has a particular interest in musical performance and coordination of musicians. His perspective is that musical performance with technology, technology supported sports training and gaming, particularly team multiplayer games, are cases where static models of cognition seem to break down. He believes modelling in terms of processes and synchronization has great power.

Daniel then spoke about how interaction effects are important in Human Computer Interaction. Firstly, giving the example that notifications influence a person to use their phone. Secondly, the more a person uses their phone the more they cause notifications to appear. He posed the interesting question, how does one disentangle this hypothesis to find out the degree to which notifications influence us?

Daniel then spoke about how reciprocal, interaction dominant effects also play a significant role in the organisation of our individual skilled behaviour. He gave us an overview of his own research where he found evidence of interaction dominant coordination processes in a simple skilful game task, where users are asked to control a cursor to herd sheep.

BIAS 22 – Review day 2 keynote – Prof. Liz Sonenberg: “Imperfectly rational, rationally imperfect, or perfectly irrational…”

Imperfectly rational, rationally imperfect, or perfectly irrational: challenges for human-centered AI keynote by Prof. Liz Sonenberg

This blog post is written/edited by CDT Students  Isabella Degen and Oliver Deane

Liz opened the second day of BIAS 22 with her thought-provoking and entertaining keynote speech about automatic decision-making aids. She demonstrated how we humans make perfectly irrational decisions and spoke about the implications of using Explainable Artificial Intelligence (XAI) for better decision-making. Liz’s talk mentioned a great body of research spanning psychology, mathematics, and computer science for which she kindly provides all the references here https://tinyurl.com/4njp563e.

Starting off, Liz presented research demonstrating how subtle influences in our life can change the decisions we make despite us thinking that we are making them completely rationally. What we believe is human rational decision-making in fact is littered with cognitive biases. Cognitive bias is when we create a subjective reality based on a pattern we perceive regardless of how representative that pattern is of all the information. Anchoring is a type of cognitive bias that happens when a decision of a person is influenced by an anchor such as a random number being shown while the person knows that they are being shown a random number that has nothing to do with their decision. An example Liz shared is an experiment by Englich et al who used irrelevant anchors to change experts’ decision-making. In the experiment young judges were asked to discover the length of the sentence for a theft crime by throwing a dice. Unkown to the judges the dice was rigged: for one group of judges it would throw high numbers, for the other it would throw low numbers. The judges knew that throwing a dice should not influence their decision. However, the result was that the group with the dice giving low numbers gave a 5 months sentence while the group with the dice giving high numbers gave an 8 months sentence. This is not the only kind of cognitive bias. Human decision making also suffers from framing bias where the way in which data is presented can affect the decision we make. As well as confirmation bias where we tend to interpret new information as a confirmation of our existing beliefs without considering that we only ever observe a limited kind of information and so forth. With these examples Liz made us doubt how clearly and rationally we humans can make decisions.

The irrationality of humans is an interesting challenge to consider for researchers attempting to create intelligent systems that help us humans make better decisions. Should we copy the imperfect human rationality in intelligent agents, or should we make them more rational than humans? And what does that mean for interactions between human and intelligent systems? Research shows that it is important that human operators have a sense of what the machine is doing to be able to interact with it. From accidents such as the Three Mile Island’s partial meltdown of a nuclear reactor, we can learn how important it is to design systems in a way that does not overwhelm the human operator with information. The information presented should be just enough to enable an operator to make a high-quality decision. It should help the operator to know when they can trust the decision the machine made and when to interrupt. When designing these systems, we need to keep in mind that people suffer from biases such as automation bias. Automation bias happens when a human cannot make a decision based on the information the machine provides and instead decides to just go with the machine’s decision knowing that the machine is more often right than the human. Sadly, this means that a human interacting with a machine might not be able to interrupt the machine at the right moment. We know that human decision-making is imperfectly rational. And while automation bias appears to be an error, it is in fact a rational decision in the context of limited information and time available to the human operator.

One promise of XAI is to use explanations to counteract various cognitive biases and with that help a human operator to make better decisions together with an intelligent system. Liz made a thought-provoking analogy to the science of magic. Magicians use our limited memory and observation abilities to manipulate our feelings and deceive us and make the impossible appear possible. A magician knows that the audience tries to spot how the trick works. And on the other hand, the audience also knows that the magician tries to deceive them and that they are trying to discover how the trick works. Magicians understand their audience well. They know what humans really do and exploit the limited resources they have. Like in magic human-centered AI systems ought to anticipate how perfectly irrational we humans make decisions to enable us to make better decisions and counteract our biases.

BIAS 22 – Review day 2 talk – Dr Oliver Ray: “Knowledge-driven AI”

This blog post is written/edited by CDT Students  Daniel Collins and Matt Clifford

BIAS 22 – Day 2, Dr Oliver Ray: “Knowledge-driven AI”

The second talk of day two was delivered by Dr Oliver Ray (University of Bristol), on the topic of human-in-the-loop machine learning using Inductive Logic Programming (ILP) and its application in cyber threat elucidation.

Cyber threat elucidation is the task of analysing network activity to identify ransomware attacks, and to better understand how they unfold. Ransomware is a type of malware which infects victims’ devices, encrypts their data, and demands money from them to restore access. Infection typically occurs through human error. For example, a person may be unwittingly tricked into downloading and running a “trojan” – malware that has been disguised as a legitimate and benign file. The executed ransomware encrypts data, and backups of that data, on the infected system, and the perpetrator can then demand a ransom payment for decryption services. However, ransomware does not always start encrypting data immediately. Instead, it may lay relatively dormant whilst it spreads to other networked systems, and spend time gathering sensitive information, and creating back-ups of itself to block data recovery. If an attack can be identified at this stage or soon after it has started encrypting data, it can be removed before most of the data has been affected.

Ransomware is a persistent threat to cyber security, and each new attack can be developed to behave in unpredictable ways. Dr Ray outline the need for better tools to prepare for new attacks – when faced with a new attack, there should be systems to help a user understand what is happening and what has happened already so that ransomware can be found and removed as quickly as possible, and relevant knowledge can be gained from the attack.

To identify and monitor threats, security experts may perform forensic analysis of Network Monitoring Systems (NMS) data from around the time of infection. This data exists in the form of network logs – relational databases containing a time-labelled record of events and activity occurring across the networked systems. However, there are very large amounts of log data, and most of it is associated with benign activity, unrelated to the threat, making it difficult to find examples of malicious activity. Further, in the case of new threats, there are little to no labelled examples of logs known to be related to an attack. Human knowledge and reasoning are therefore crucial for identifying relevant information in the logs.

ILP based machine learning (ML) was then presented by Dr Ray as a promising alternative to more ‘popular’ traditional ML methods for differentiating ransomware activity from benign activity in large network logs.  This is because ILP is better suited for working with relational data, an area where deep learning and traditional ML methods can struggle since often require tabular or vectorisable data formats. ILP not only gives the ability to make predictions on relational data, but it also produces human interpretable logic rules through which it is possible to uncover and learn about the system itself. This could provide valuable insights into how the infection logs are generated, and which features of the logs are important for identification, as opposed to guessing which features might be important.

Dr Ray went on to detail the results of his work with Dr Steve Moyle (Amplify Intelligence UK and Cyber Security Centre, University of Oxford), on a novel proof-of-concept for an ILP based “eXplanatory Interactive Relational Machine Learning” (XIRML) system called “Acuity”. This human-in-the-loop system allows ILP and cyber security experts to direct the cyber threat elucidation process, through interactive functionality for guided data-caching on large network logs, and hypothesis-shaping for rebutting or altering learned logic rules.

In his concluding remarks, Dr Ray shared his thoughts on the future of this technology. As he sees it, the goal is to develop safe, auditable systems that could be used in practice by domain experts alone, without the need for an ILP expert in the loop. To this end, he suggests that system usability and human-interpretable outputs are both crucial factors for the design of future systems.

BIAS 22 – Review Day 2 talk – Dr Nirav Ajmeri: “Ethics in Sociotechnical Systems'”

This blog post is written/edited by CDT Students Jonathan Erkine and Jack Hanslope

Following from a great keynote by Liz Sonenberg, Dr Nirav Ajmeri presented a discussion on Ethics in Socio-Technical Systems (STS).

As is common practice in discussions on AI, we began by looking inwards to what kind of human behaviour we are trying to replicate – what aspect of intelligence have we defined as our objective? In this case it was the ability of machines to make ethical decisions. Dr. Ajmeri referred to Kantian and Aristotelian ethical frameworks which describe moral duty and virtuous behaviour to establish an ethical baseline, which led to the first main takeaway of the discussion:

We must be capable of expressing how humanity defines, quantifies, and measures ethics before discussing how we might synthesise ethical behaviour.

Dr. Ajmeri clarified that ethical systems must be robust to situations where there are “no good choices”. That is, when even a human might struggle to see the most ethical path forwards.  Keen to move away from the trolley problem, Nirav described a group of friends who can’t agree on a restaurant for their evening meal, expounding on the concepts of individual utility, rationality, and fairness to explain why science might fail to resolve the problem.

The mathematical solution might be a restaurant that none of them enjoy, and this could be the same restaurant for every future meal which they attend. From this example, the motivation behind well-defined ethics in socio-technical systems becomes clear; computers lack the ability to apply emotion when reasoning about the impact of their decisions, leading to the second lesson which we took from this talk;

Ethical integration of AI into society necessitates the design of socio-technical systems which can artificially navigate “ethical gridlock”.

Dr. Ajmeri then described the potential of multiagent systems research for designing ethical systems by incorporating agents’ value preferences (ethical requirements) and associated negotiation techniques. This led to a good debate on the merits and flaws of attempting to incorporate emotion into socio-technical systems, with questions such as:

Can the concept of emotion be heuristically defined to enable pseudo-emotional decision making in circumstances when there is no clear virtuous outcome?

Is any attempt to incorporate synthetic emotion inherently deceitful?

These questions were interesting by the very nature that they couldn’t be answered, but the methods described by Nirav did, in the authors opinion, describe a system which could achieve what was required of it – to handle ethically challenging situations in a fair manner.

What must come next is the validation of these systems, with Nirav prompting that the automated handling of information with respect to the (now not-so-recent) GDPR regulations would provide a good test bed, prompting the audience to consider what this implementation might involve.

The end of this talk marked the halfway point of the BIAS summer school, with plenty of great talks and discussions still to come. We would like to thank Dr. Nirav Ajmeri for this discussion, which sits comfortably in the wheelhouse of problems which the Interactive AI CDT has set out to solve.

BIAS 22 – Review Day 1 – Dr James Cussens: ‘Algorithms for learning Bayesian networks’

BIAS 22 DAY 1, TALK 1 

This blog post is written by CDT Students  Roussel Desmond Nzoyem, Davide Turco and Mauro Comi 

This Tuesday 06th September 2022 marked the start of the second edition of the Bristol Interactive AI Summer School (BIAS): a unique blend of events (talks, workshops, etc.) focusing on machine learning and other forms of AI explored in the Interactive AI CDT.

Following the tradition, BIAS22 began with a few words of introduction from the CDT director, Professor Peter Flach. He welcomed and warmly thanked the roomful of attendees from academia and industry.

Prof Flach proceeded with a passionate presentation of the range of speakers while giving the audience a brief taste of what to expect during the 3-day long event: talks, workshops, along with a barbecue! He remarked on the variety of Interactive AI ingredients that would be touched: data-driven AI, knowledge-driven AI, human-AI interaction, and Responsible AI.

Prof Flach’s introduction ended with an acknowledgement of the organisers of the event.

 

Dr James Cussens: ‘Algorithms for learning Bayesian networks’

The first talk of the day was an introduction to Bayesian networks and methods to learn them, given by our very own James Cussens.

Bayesian networks (BN) are directed acyclic graphs, in which each node represents a random variable. The important aspects of these networks, as Dr Cussens highlighted, is that they both define probabilistic distributions and causality relationships: this makes Bayesian networks a popular tool in complex fields such as epidemiology and medical sciences.

Learning BNs is a form of unsupervised learning, based on the assumption that the available data (real or simulated) is generated by an underlying BN. There are multiple reasons for learning a BN from data, such as learning a data-generating probability distribution or learning conditional independence relationships between variables; the talk, however, focused on learning a BN in order to estimate a causal model of the data, which is a task not easy to complete with other machine learning approaches we study and use in the CDT.

A popular algorithm for learning the structure of a BN, the so-called DAG, is constraint-based learning: the basic idea behind this algorithm is to perform statistical tests on data and find a DAG which is consistent with the outcomes of the tests. However, this approach presents some issues: for example, different DAGs could encode the same set of conditional independence relationships.

Dr Cussens then proceeded to introduce DAGgity, a widely used software for creating DAGs and analysing their causal structure. It is important to note that DAGgity does not learn DAGs from data, but allows the researcher to perform interventions and graph surgery. For example, it could allow a clinician to infer a treatment-response causal effects without doing that in practice. The talk also included a small excursus on score-based learning of BNs, which is a Bayesian approach to learning these networks, I.e., it has a prior formulation.

There are many different methods for learning BNs and evaluation is key for choosing the best method. Dr Cussens introduced benchpress, a framework for performing method evaluation and comparison, and showed some results from the benchpress paper, including the evaluation of his own method, GOBNILP (Global Optimum Bayesian Network via Inductive Logic Programming).

We are thankful to James Cussens for opening the BIAS22 with his talk; it was great to get an introduction to these methods that put together many aspects of our CDT, such as causality and graphical models.

 

BIAS 22 – Review Day 1: Professor James Ladyman: “Attributing cognitive and affective states to AI systems”

This blog post is written by CDT Student Henry Addison

BIAS 22 – Human stupidity about artificial intelligence: My thoughts on Professor James Ladyman’s talk “Attributing cognitive and affective states to AI systems”,  Tuesday 6th September 2022

The speaker arrives, sweaty, excited after his dash across town. The AI never stops working so perhaps he cannot either. He is a doom-monger. How are the lying liars in charge lying to you? When those people-in-charge run large tech companies, how do they take advantage of our failures to both miss and over-attribute cognitive and affective states and agency to AI in order to manipulate us?

AI is a field that seeks to decouple capabilities that in humans are integrated. For humans interacting with them, this can surprise us. In adult humans intelligence is wrapped up with sentience, autonomy is wrapped up with responsibility. Not so the chess robot – very good at chess (which for a human requires intelligence) but not sentient – nor the guided targeting system for which the responsibility of target-picking is left to a human.

Humans are overkeen to believe an AI cares, understands, is autonomous. These words have many meanings to humans, allowing the decoupling of capabilities to confuse us. “Who cares for granny?” This may be a request for the nurse (human or robot) who assists your grandmother in and out of the bath. Or it may be a request of despair by a parent trying to get their children to help prepare a birthday party. If an AI is autonomous, is it a moral agent that is responsible for what it does?

The flip side of the coin are the capabilities that we do not attribute to an AI, perhaps because they are capabilities human do not have. We lose sight of important things. Like how the machines notice and store away far more than we expect and then use these data to serve us ads, recommend us films, deny us loans, guide us to romantic partners, get us hooked on the angry ramblings of narcissists, lock us up.

AI is shit. AI is ruining us. AI is enabling a descent into fascism. But presumably there is enough hope for him to bother building up such a sweat to come and talk to us. We must do more philosophizing so more people can understand AI and avoid unconscious manipulation by it. The business models of data that take advantage of us are our fault, they are human creations not technical necessities but that means we can change them.

Then again how was the speaker lying to me? How is your lying liar of an author lying to you?

Bristol Summer AI day – 30 June 2022

This blog post is written by CDT Students Mauro Comi and Matt Clifford.

For the Bristol summer AI day we were lucky enough to hear from an outstanding group of internationally renowned speakers. The general topic for talks was based around the evaluation of machine learning models. During the day we touched upon a variety of interesting concepts such as: multilabel calibration, visual perception, meta-learning, uncertainty-awareness and the evaluation of calibration. It was an enjoyable and inspiring day and we give a huge thanks to all of the organisers and speakers of the day.

Capability Oriented Evaluation of Models

The day’s talks opened with Prof. José Hernández-Orallo who presented his work around evaluating the capabilities of models rather than their aggregated performance. Capability and performance are two words in machine learning evaluation that are often mistakenly used interchangeably.

Capabilities are a more concrete evaluation of a model which can tell us the prediction of a model’s success on an instance level. This is crucial and reassuring for safety critical applications where knowing the limits of use for a model is essential.

Evaluation of classifier calibration

Prof. Meelis Kull gave a pragmatic demonstration of how the errors of calibration can be determined. After giving us an overview of the possible biases when estimating the calibration error from a given test set, he explained a new paradigm ‘fit-on-the-test’. This approach reduces some biases such as those due to arbitrary binning choices of the probability space.

A Turing Test for Artificial Nets devoted to vision

Jesus’ presented work focused on understanding the visual system. Deep neural networks are the current state of the art in machine vision tasks, taking some degree of inspiration from the human visual system. However, using deep neural networks to understand the visual system is not easy.

Their work proposes an easy-to-use test to determine if human-like behaviour emerges from the network. Which, in principle, is a desirable property of a network that is designed to perform similar tasks that the human brain conducts, such as image segmentation and object classification.

The experiments are a Turing style set of tests that the human visual system is known to pass. They provide a notebook style test bed on GitHub. In theory, if your network that is operating on the visual domain passes the tests then it is regarded as having a competent understanding of the natural visual world.

The evaluation procedures were later explained by Jesus’ PhD students Jorge and Pablo. They take two networks: PerceptNet and a UNet variation, and with them determine the level of similarity to the human visual system. They test known features that occur and that are processed by the human visual system when shown in natural images such as Gabor filter edge outputs and luminosity sensitive scaling. The encoded representations of the images from PerceptNet and UNet are then compared to what is found in the human visual system to illustrate any discrepancies.

This work into evaluating networks’ understanding of natural imaging is useful for justifying decisions such as architecture design and what knowledge a network has learnt.

Uncertainty awareness in machine learning models

Prof. Eyke Hullermeier’s talk expanded on the concept of uncertainty awareness in ML model. ML classifiers tend to be overconfident on their predictions, and this could lead to harmful behaviours, especially in safety-critical contexts. Ideally, we want a ML system to give us an unbiased and statistically reliable estimation of their uncertainty. In simpler words, we want our model to tell us “I am not sure about this”.

When dealing with uncertainty, it is important to distinguish the aleatoric uncertainty, due to stochasticity in the data, from the epistemic one, which is caused by lack of knowledge. However, Prof. Hullermeier explains that it’s often hard to discern the source of uncertainty in real-world scenarios. The conversation moves from a frequentist to a Bayesian perspective of uncertainty, and dives into different levels of probability estimation.

ML for Explainable AI

Explainability is a hot topic in Machine Learning nowadays. Prof. Cèsar Ferri presented his recent work on creating accurate and interpretable explanations using Machine Teaching, an area that looks for the optimal examples that a teacher should use to make a learner capture a concept.

This is an interesting concept for machine learning models where the teacher and student scenario has been flipped. Prof. Ferri showed how this concept was applied to make noisy curves representing battery health monitoring more interpretable. This involves selecting an explanation that balances simplicity and persuasiveness to the user in order to convey the information effectively.

Explainability in meta learning and multilabel calibration

Dr. Telmo SIlva Filho expanded the concept of explainability introduced by Prof. Ferri to the meta-learning setting. The first paper that he described suggested a novel method, Local Performance Regions, to extract rules from a predetermined region in the data space and link them to an expected performance.

He then followed, together with Dr. Hao Sang, with a discussion of multilabel classification and calibration, and how multilabel calibration is often necessary due to the limitation of label-wise classification. The novelty in their approach consists in calibrating a joint label probability with consistent covariance structure.

Final Words

Again, we would like to emphasise our gratitude to all of the speakers and organisers of this event and we look forward to the next interactive AI event!

BIAS Day 1 Review: ‘Interactive AI’

This review of the 2nd day of the BIAS event, ‘Interactive AI’, is written by CDT Student Vanessa Hanschke

The Bristol Interactive AI Summer School (BIAS) was opened with the topic of ‘Interactive AI’, congruent with the name of the hosting CDT. Three speakers presented three different perspectives on human-AI interactions.

Dr. Martin Porcheron from Swansea University started with his talk “Studying Voice Interfaces in the Home”, looking at AI in one of the most private of all everyday contexts: smart speakers placed in family homes. Using an ethnomethodological approach, Dr. Porcheron and his collaborators recorded and analysed snippets of family interactions with an Amazon Echo. They used a purpose-built device to record conversations before and after activating Alexa. While revealing how the interactions with the conversational AI were embedded in the life of the home, this talk was a great reminder of how messy real life may be compared to the clean input-output expectations AI research can sometimes set. The study was also a good example of the challenge of designing research in a personal space, while respecting the privacy of the research subjects.

Taking a more industrial view of human-AI interactions, Dr Alison Smith-Renner from Dataminr followed with her talk “Designing for the Human-in-the-Loop: Transparency and Control in Interactive ML”. How can people collaborate with an ML (Machine Learning) model to achieve the best outcome? Dr. Smith-Renner used topic modelling to understand the human-in-the-loop problem with respect to these two aspects: (1) Transparency: methods for explaining ML models and their results to humans. And (2) Control: how users can provide feedback to systems. In her work, she looks at how users are affected by the different ways ML can apply their feedback and if model updates are consistent with the behaviour the users anticipate. I found particularly interesting the different expectations the participants of her study had of ML and how the users’ topic expertise influenced how much control they wanted over a model.

Finally, Prof. Ben Shneiderman from the University of Maryland concluded with his session titled “Human-Centered AI: A New Synthesis” giving a broader view on where AI should be heading by building a bridge between HCI (Human-Computer Interaction) and AI. For the question of how AI can be built in a way that enhances people, Prof. Shneiderman presented three answers: the HCAI framework, design metaphors and governance structures, which are featured in his recently published book. Hinting towards day 4’s topic of responsible AI, Prof. Shneiderman drew a compelling comparison between safety in the automobile industry and responsible AI. While often unlimited innovation is used as an excuse for a deregulated industry, regulation demanding higher safety in cars led to an explosion of innovation of safety belts and air bags that the automobile industry is now proud of. The same can be observed for the right to explainability in GDPR and the ensuing innovation in explainable AI. At the end of the talk, Prof. Shneiderman called to AI researchers to create a future that serves humans and is sustainable and “makes the world warmer and kinder”.

It was an inspiring afternoon for anyone interested in the intersection of humans and AI, especially for researchers like me trying to understand how we should design interfaces and interactions, so that we can gain the most benefit as humans from powerful AI systems

BIAS Day 4 Review: ‘Data-Driven AI’

This review of the 4th day of the BIAS event, ‘Data-Driven AI’, is written by CDT Student Stoil Ganev.

The main focus for the final day of BIAS was Data-Driven AI. Out of the 4 pillars of the Interactive AI CDT, the Data-Driven aspect tends to have a more “applied” flavour compared to the rest. This is due to a variety of reasons but most of them can be summed up in the statement that Data-Driven AI is the AI of the present. Most deployed AI algorithms and systems are structured around the idea of data X going in and prediction Y coming out. This paradigm is popular because it easily fits into modern computer system architectures. For all of their complexity, modern at-scale computer systems generally function like data pipelines. One part takes in a portion of data, transforms it and passes it on to another part of the system to perform its own type of transformation. We can see that, in this kind of architecture, a simple “X goes in, Y comes out” AI is easy to integrate, since it will be no different from any other component. Additionally, data is a resource that most organisations have in abundance. Every sensor reading, user interaction or system to system communication can be easily tracked, recorded and compiled into usable chunks of data. In fact, for accountability and transparency reasons, organisations are often required to record and track a lot of this data. As a result, most organisations are left with massive repositories of data, which they are not able to fully utilise. This is why Data-Driven AI is often relied on as a straight forward, low cost solution for capitalising on these massive stores of data. This “applied” aspect of Data-Driven AI was very much present in the talks given at the last day of BIAS. Compared to the other days, the talks of the final day reflected some practical considerations in regards to AI.

The first talk was given by Professor Robert Jenssen from The Arctic University of Norway. It focused on work he had done with his students on automated monitoring of electrical power lines. More specifically how to utilise unmanned aerial vehicles (UAVs) to automatically discover anomalies in the power grid. A point he made in the talk was that the amount of time they spent on engineering efforts was several times larger than the amount spent on novel research. There was no off the shelf product they could use or adapt, so their system had to be written mostly from scratch. In general, this seems to be a pattern with AI systems where even, if the same model is utilised, the resulting system ends up extremely tailored to its own problem and cannot be easily reused for a different problem. They ran into a similar problem with the data set, as well. Given that the problem of monitoring power lines is rather niche, there was no directly applicable data set they could rely on. I found their solution to this problem to be quite clever in its simplicity. Since gathering real world data is rather difficult, they opted to simulate their data set. They used 3D modelling software to replicate the environment of the power lines. Given that most power masts sit in the middle of fields, that environment is easy to simulate. For more complicated problems such as autonomous driving, this simulation approach is not feasible. It is impossible to properly simulate human behaviour, which the AI would need to model, and there is a large variety in urban settings as well. However, for a mast sitting in a field, you can capture most of the variety by changing the texture of the ground. Additionally, this approach has advantages over real world data as well. There are types of anomalies that are so rare that they might simply not be captured by the data gathering process or be too rare for the model to notice them. However, in simulation, it is easy to introduce any type of anomaly and ensure it has proper representation in the data set. In terms of the architecture of the system, they opted to structure it as a pipeline of sub-tasks. There are separate models for component detection, anomaly detection, etc. This piecewise approach is very sensible given that most anomalies are most likely independent of each other. Additionally, the more specific a problem is, the easier and faster it is to train a model for it. However, this approach tends to have larger engineering overheads. Due to the larger amount of components, proper communication and synchronisation between them needs to be ensured and is not a given. Also, depending on the length of the pipeline, it might become difficult to ensure that it perform fast enough. In general I think that the work Professor Jenssen and his students did in this project is very much representative of what deploying AI systems in the real world is like. Often your problem is so niche that there are no readily available solutions or data sets, so a majority of the work has to be done from scratch. Additionally, even if there is limited or even no need for novel AI research, a problem might still require large amounts of engineering efforts to solve.

The second talk of the day was given by Jonas Pfeiffer, a PhD student from the Technical University of Darmstadt. In this talk he introduced us to his research on Adapters for Transformer models. Adapters are a light weight and faster approach to fine tuning Transformer models to different tasks. The idea is rather simple, the Adapters are small layers that are added between the Transformer layers, which are trained during fine tuning, while keeping the transformer layers fixed. While pretty simple and straight forward, this approach appears to be rather effective. However, other than focusing on his research on Adapters, Jonas is also one of the main contributors to AdapterHub.ml, a framework for training and sharing Adapters. This brings our focus to an important part of what is necessary to get AI research out of the papers and into the real world – creating accessible and easy to use programming libraries. We as researchers often neglect this step or consider it to be beyond our responsibilities. That is not without sensible reasons. A programming library is not just the code it contains. It requires training materials for new users, tracking of bugs and feature requests, maintaining and following a development road map, managing integrations with other libraries that are dependencies or dependers, etc. All of these aspects require significant efforts by the maintainers of the library. Efforts that do not contribute to research output and consequently do not contribute to the criteria by which we are judged as successful scientists. As such, it is always a delight when you see a researcher willing to go this extra mile, to make his or her research more accessible. The talk by Jonas also had a tutorial section where he led us though the process of fine tuning an off the shelf pre-trained Transformer. This tutorial was delivered through Jupyter notebooks easily accessible from the projects website. Within minutes we had our own working examples, for us to dissect and experiment with. Given that Adapters and the AdapterHub.ml framework are very recent innovations, the amount and the quality of documentation and training resources within this project is highly impressive. Adapters and the AdapterHub.ml framework are excellent tools that, I believe, will be useful to me in the future. As such, I am very pleased to have attended this talk and to have discovered these tools though it.

The final day of BIAS was an excellent wrap up to the summer school. With its more applied focus, it showed us how the research we are conducting can be translated to the real world and how it can have an impact. We got a flavour of both, what it is like to develop and deploy an AI system, and what it is like to provide a programming library for our developed methods. These are all aspects of our research that we often neglect or overlook. Thus, this day served as great reminder that our research is not something confined within a lab but that it is work that lives and breathes within the context of the world that surrounds us.

BIAS Day 3 Review: ‘Responsible AI’

This review of the 3rd day of the BIAS event, ‘Responsible AI’, is written by CDT Student Emily Vosper. 

Monday was met with a swift 9:30am start, made easier to digest with a talk on AI and Ethics, why all the fuss? By Toby Walsh. This talk, and subsequent discussion, covered the thought-provoking topic of fairness within AI. The main lesson considered whether we actually need new ethical principles to govern AI, or whether we can take inspiration from well-established areas, such as medicine. Medicine works by four key principles: Beneficence, non-maleficence, autonomy and justice and AI brings some new challenges to this framework. The new challenges include autonomy, decision making and culpability. Some interesting discussions were had around reproducing historical biases when using autonomous systems, for example within the justice system such as predictive policing or parole decision making (COMPAS).

The second talk of the day was given by Nirav Ajmeri and Pradeep MuruKannaiah on ethics in sociotechnical systems. They broke down the definition of ethics as distinguishing between right and wrong which is a complex problem full of ethical dilemmas. Such dilemmas include examples such as Les Miserables where the actor steals a loaf of bread, stealing is obviously bad, but the bread is being stollen to feed a child and therefore the notion of right and wrong becomes nontrivial. Nirav and Pradeep treated ethics as a multiagent concern and values were brought in as the building blocks of ethics. Using this values-based approach the notion of right and wrong could be more easily broken down in a domain context i.e. by discovering what the main values and social norms are for a certain domain rules can be drawn up to better understand how to reach a goal within that domain. After the talk there were some thought provoking discussions surrounding how to facilitate reasoning at both the individual and the societal level, and how to satisfy values such as privacy.

In the afternoon session, Kacper Sokol ran a practical machine learning explainability session where he introduced the concept of Surrogate Explainers – explainers that are not model specific and can therefore be used in many applications. The key takeaways are that such diagnostic tools only become explainers when their properties and outputs are well understood and that explainers are not monolithic entities – they are complex with many parameters and need to be tailer made or configured for the application in hand.

The practical involved trying to break the explainer. The idea was to move the meaningful splits of the explainer so that they were impure, i.e. they contain many different classes from the black box model predictions. Moving the splits means the explainer doesn’t capture the black box model as well, as a mixture of points from several class predictions have been introduced to the explainer. Based on these insights it would be possible to manipulate the explainer with very impure hyper rectangles. We found this was even more likely with the logistical regression model as it has diagonal decision boundaries, while the explainer has horizontal and vertical meaningful splits.