This blog post is written/edited by CDT Students Amarpal Sahota and Oliver Deane
This was a thought provoking starting point and one that clearly has a large impact on human computer interaction. Daniel stated that this is a line of research in psychology, cognitive science, and robotics, that has run somewhat parallel to mainstream psychology.
One of the initiators of this was James J Gibson. Gibson and others in the last 70 years did a lot of work on how we use resources outside of just the brain, in our environment and in our bodies, and coordinate all of these together to behave effectively. Daniel stated that with the lens of embodiment we start focusing on processes, interactions, and relations, and the dynamics that follow and this is primarily a change in how we model things.
Therefore, to summarize one could consider the traditional cognitive model as a linear system. First we sense the world, then we form a representation of that world in our brain. Then the representation gets processed through a bunch of neatly defined modules, updates existing plans and intentions, and results in some representation of an action, which we then carry out. The embodied view is more complex as we are not simply in the world but also a part of it. The world is changing constantly, and our behaviour and cognition is simply another physical process in this world.
At a high-level embodied approaches consider behaviour in the world as a kind of continual adjustment and adaptation, with most behaviours are grounded in a kind of improvisatory, responsive quality. Daniel shared a good example of this from Lucy Suchman related to canoeing where you may have an idea of your plan as you look down the river ‘I need to stay left there, slow down over there’ but at execution time you have to adapt your plan.
Daniel stated that a lot of work has been done observing a wide range of human behaviours, from technology interaction, to manning air-traffic control centres and crewing ships. In all of these contexts it is argued that our embodied skills – our adaptation and our implicit skills of coordination with the mess of the situation as it plays out – are the most important factor in determining outcomes.
Human Computer Interaction is increasingly focused on complex behaviours. Daniel talked about the idea that we’re going to do more and more in augmented reality and virtual reality. Computing will be integrated to support a wide range of everyday behaviours, which are not conventionally “cognitive” – you’re not sitting and thinking and making only very small movements with your fingers on a keyboard.
Daniel has a particular interest in musical performance and coordination of musicians. His perspective is that musical performance with technology, technology supported sports training and gaming, particularly team multiplayer games, are cases where static models of cognition seem to break down. He believes modelling in terms of processes and synchronization has great power.
Daniel then spoke about how interaction effects are important in Human Computer Interaction. Firstly, giving the example that notifications influence a person to use their phone. Secondly, the more a person uses their phone the more they cause notifications to appear. He posed the interesting question, how does one disentangle this hypothesis to find out the degree to which notifications influence us?
Daniel then spoke about how reciprocal, interaction dominant effects also play a significant role in the organisation of our individual skilled behaviour. He gave us an overview of his own research where he found evidence of interaction dominant coordination processes in a simple skilful game task, where users are asked to control a cursor to herd sheep.